跳转到主要内容
Toggle navigation
快讯
技术
新品
方案
博客
视频
直播
访谈
活动
登录
注册
开关稳压器
超低噪声开关稳压器在噪声敏感型射频应用中的优势
新型超低噪声开关稳压器具有超低噪声、高效率、小尺寸和大电流的特点,非常适合各种对噪声敏感的射频应用场景,包括5G/无线通信、防务领域、仪器仪表等。Silent Switcher® 3进阶型开关稳压器系列拥有超低的输出噪声,在低频范围(0.1 Hz至100 kHz)内,其噪声甚至比大多数低压差(LDO)稳压器还要低。
设计电路当然要“知己知彼”,开关稳压器拓扑的噪声特性大起底~
目前存在许多不同的开关稳压器拓扑。有些拓扑应用十分广泛,例如经典的降压型转换器,也称为降压转换器。然而,也有一些少为人知的开关模式DC-DC转换器,包括Zeta拓扑。这些拓扑分为基本拓扑和扩展拓扑,基本拓扑只使用两个开关、一个电感和两个电容。它们都属于非隔离式开关稳压器;即未进行电气隔离的开关稳压器。此类拓扑包括降压转换器、升压转换器和反相降压-升压拓扑。所有其他拓扑都需要额外的元件,例如,SEPIC转换器还需要耦合电容和第二电感。除了非隔离式开关稳压器外,还有一些稳压器是通过变压器来实现电气隔离。 电路设计人员通常将电源视为黑盒子或4极元件,其具有两个输入线路和两个输出线路。图1所示为DC-DC转换器的框图符号。顶部是非电气隔离式DC-DC转换器,底部是电气隔离式转换器。
全面剖析开关稳压器噪声
一般而言,与低压差(LDO)稳压器输出相比,人们认为传统开关稳压器的输出电压噪声很大。然而,LDO电压会引起严重的额外热问题,并使得电源设计更加复杂。全面认识开关稳压器噪声很有必要,有助于设计低噪声开关解决方案,使之产生与LDO稳压器相当的低噪声性能。本文分析和评估的目标是采用电流模式控制的降压稳压器,因为它在应用中最常用。信号分析是了解开关纹波噪声、当前宽带噪声特性(及其来源)、开关引起的高频尖峰噪声的主要方法。本文将讨论开关稳压器PSRR(电源抑制比,其对输入噪声抑制很重要)以及信号分析方法。 开关纹波噪声 本部分依据基波和谐波理论介绍降压转换器输出纹波计算公式。根据开关稳压器拓扑结构和基本操作,纹波始终是开关稳压器中的主要噪声,因为峰峰值电压幅度一般为几mV到几十mV。它应被视为周期性且可预测的信号。
专家:开关式稳压器在系统中的配置及工作原理
作者:颜荣宏 图1:Camera/Radar 应用方块图 汽车应用中,随着电子系统逐渐增大的情况下,电源的需求也逐渐的增加(如图1)。例如,以往一般芯片的电流需求大多在100mA以下,但依目前的需求而言,500mA已成为主流,也因此在稳压器的输出电流及整体系统功耗的考虑下,开关式稳压器无疑是最佳的选择。在这次的介绍中,将从最简单的方式开始来介绍一下开关式稳压器的控制原理。
线性及开关式稳压器性能比较及类型分析
本文作者:颜荣宏 DCDC直流电源转换器从字面上来看便可大致得知其主要作用是要作为不同电压源需求转换的, 从某一主要输入电压转换到另一个所需求的电压来提供给不同芯片所使用。 举例来说, 一般汽车上所提供的电压为12V, 但在不同的应用及不同的IC芯片则会有不同的工作电压需求, DCDC转换器是指将直流输入电源转换成另一直流输出的装置名称。在应用上,通常有线性稳压器 (Linear Regulator),如图1,或开关式稳压器 (Switching Regulator),如图2。
开关稳压器连载(8):开关频率的考虑点
开关稳压器IC使用的开关频率从数十kHz到数百万Hz,最近有些甚至似乎以高频率工作。设计时须以几项条件为基本来选择频率。 第一点是重视效率或重视尺寸的问题。如果将开关频率调高,则外置的电感和电容器将使用较小的,尺寸必然会变小。因此,包含安装面积和高度在内的外形尺寸也会变小,有助于节省空间。不过,开关损耗会通过高速开关増加,故效率会降低几个百分比。尤其对小型便携设备,2个项目就算不想权衡也必须取得平衡使其优化。 图62:内置跟踪功能使用例 图63表格一般探讨事项和开关频率的关系。
开关稳压器连载(7):保护功能/可编程功能
DC/DC转换器除了理所当然向电路供给电源外,确保电路安全也很重要。近年,DC/DC转换器用的IC几乎都搭载了被认为必备的保护功能。有些保护功能可以由用户调整阈值等支持各种条件。此外,电源电路要支持使用CPU或FPGA等的复合电源的装置对电源接入的顺序和时序需求。为此,具备可编程功能的电源IC。虽然外置电路也可以实现IC所搭载的保护功能或可编程功能,但其设计比电源IC要复杂得多,且需要增加许多零件,并不可行。在这里,介绍代表性保护功能和可编程功能的概述。 保护功能:热关断 热关断是IC的结温达最大额定,就是Tj max的前后时关断电路工作的构造。工作的结温因IC而异,大多被设定在Tj max的前后。关断后的工作模式有自动恢复型和闭锁型2种。
开关稳压器连载(6):控制方式 (电压模式、电流模式、迟滞控制)
最初已经说明开关稳压器的反馈(feedback)控制方式有电压模式、电流模式、迟滞控制等3种。开关稳压器也与线性稳压器同样通过反馈电路进行稳定化。在这里,加以详细说明。由于各有优点和缺点,因此该选择何种方式必须考虑平衡点。 电压模式 电压模式控制是最基本的方式。透过反馈环路只反馈输出电压。通过以误差放大器和基准电压做比较后所差距的电压再进一步与三角波做比较,决定PWM讯号的脉冲宽度来控制输出电压。此方式的优点在于纯电压的反馈环路可进行较简单的控制、可缩短ON时间、抗噪好。其缺点是,相位补偿电路复杂可能使设计变麻烦。
开关稳压器连载(5):改善同步整流式的轻负载时效率的功能
前项已经说明,同步式在轻负载时效率会因反向电流而降低。相信大家都希望难得效率高的同步式在轻负载时也能有高效率。尤其是最近,降低待机功耗已成为一大趋势。最轻负载时也即供电中电路处于关断状态的时。如果电源也能关断的话再好不过,只是必须持续给予微小功率,而此时效率低也是一大问题。 不连续模式的增加 同步整流式轻负载时效率改善的方法之一为轻负载时增加以不连续模式工作的功能。想法非常简单,也就是检测出电感电流下降至零附近后将下侧晶体管设为OFF使其不发生逆流(图43)。
开关稳压器连载(4):同步整流型和异步整流型的区别
DC/DC转换器的非绝缘型降压开关稳压器有前项所说明的异步整流(二极管)式和同步整流式。异步整流式是较早被使用的方式,就开关稳压器而言电路简单但效率却超过80%左右。其后,笔记本电脑等电池驱动且需要较大功率的应用开始要求更高效率,于是可获得高效率的同步整流式开关稳压器用IC被陆续开发,控制或电路极为复杂的同步整流式变得容易设计,逐渐成为主流。同步整流式最大可以获得近95%的效率。 图39和40是两种方式的电路概述和工作。
1
2
next
last