
HDL Coding Style 4 - 1

Chapter 4

HDL Coding Style

HDL Coding Style 4 - 2

Outline

w HDL and Synthesis Concept

w Hierarchy of HDL design

w Latch inference and registers

w Instantiation and Black box

w Synchronous and Asynchronous Design

w Combinatorial and Sequential Logic

w Case V.S. If - elsif

w Others

HDL Coding Style 4 - 3

 Language Subsets

IEEE 1076
(modeling)

IEEE 1076
(synthesis) Tool & Vendor

 Specific

N P Z
“None Portability Zone”

Avoid extensive use of tool specific constructs
that are outside of standard VHDL

HDL Coding Style 4 - 4

 Design Verification
Ø When using an HDL entry method, there is an additional level
of design verification available.

 VHDL
modules

 Synthesis

 Place & Route

Behavioral Simulation
 (Test-bench driven)

Gate-Level Functional
(Netlist-Driven)

Gate-Level Timing
(Back-Annotated Netlist)

V
 I

T
 A

 L

 VHDL Initiative Toward
 ASIC Libraries

 SDF (Standard Delay Format)
& Structural VHDL File

HDL Coding Style 4 - 5

Technology Independent
Synthesis

w The synthesis process consists of two steps:
� Synthesis technology & constraint independent
� Optimization technology & constraint driven

w Decisions made at the synthesis stage have effect on
implementation

— this is where your HDL coding style has an impact

w Take a simple example: a 16-to-1 multiplexer...

. . . .

. . .

5 CLBs 8 CLBs

HDL Coding Style 4 - 6

-- 4 to 1 multiplexer design with case construct
-- SEL: in STD_LOGIC_VECTOR(1 downto 0);
-- A, B, C, D:in STD_LOGIC;
-- MUX_OUT: out STD_LOGIC;

process (SEL, A, B, C, D)
begin
 case SEL is
 when "00" => MUX_OUT <= A;
 when "01" => MUX_OUT <= B;
 when "10" => MUX_OUT <= C;
 when "11" => MUX_OUT <= D;
 end case;
end process;

HDL Coding Style 4 - 7

-- 4 to 1 multiplexer design with tri-state construct
-- SEL: in STD_LOGIC_VECTOR(3 downto 0);
-- A, B, C, D:in STD_LOGIC;
-- MUX_OUT: out STD_LOGIC;

 MUX_OUT <= A when (SEL(0)='0') else 'Z';
 MUX_OUT <= B when (SEL(1)='0') else 'Z';
 MUX_OUT <= C when (SEL(2)='0') else 'Z';
 MUX_OUT <= D when (SEL(3)='0') else 'Z';

HDL Coding Style 4 - 8

Outline

w HDL and Synthesis Concept

w Hierarchy of HDL design

w Latch inference and registers

w Instantiation and Black box

w Synchronous and Asynchronous Design

w Combinatorial and Sequential Logic

w Case V.S. If - elsif

w Others

HDL Coding Style 4 - 9

State Machines:
One-hot
Binary

Enumerated

Counters
Adders/Subtractors

Bit Shifters
Accumulators

Building Blocks
Standard widths
Pipeline RAMs

Data Paths
Pipelining

Muxing/De-muxing
Arithmetic

Coregen
Parametizable functions

FIFOs
FIR Filters

Block RAMS
Technology Specific Functions

Specific Functions
Logiblox

RAM
Other IP/Cores

Top Level of Design
I/O infered or instantiated here

Using Hierarchy in HDL

w Using Hierarchy leads to easy design readability, re-use, and
debug

HDL Coding Style 4 - 10

Guidelines for Choosing Hierarchy
w Consider the following points when arranging your hierarchy

— all arithmetic operators should be evaluated for resource sharing
and combined within the same hierarchy/process

— keep distinct logic-types (such as state machines, random logic,
data paths, etc.) separate, so the appropriate optimizations can be
applied to each

w Choose modules that have
— a minimum of routing between modules
— a logical data flow between modules

w Some synthesis tools flatten the design before optimization
w There are commands to remove hierarchy

— in general, leave hierarchy in the design for later visibility into the
design after place and route

HDL Coding Style 4 - 11

• Example - Optimization is limited because
 hierarchical boundaries prevent sharing of common
 terms

• The path from Reg A to Reg C is divided between three
 different block descriptions

A B C

B CAReg
 A

Reg
 C

No Hierarchy in Combinational Path

Keep Related Logic Together (1)

HDL Coding Style 4 - 12

• Related combinational logic drive registers in the same block

• No hierarchical boundaries between combinational logic and
 registers

– Allows for improved sequential mapping

Keep Related Logic Together (2)

Good Example

B & C

A C

Reg
A

Reg
CA

HDL Coding Style 4 - 13

Register Hierarchical Boundaries

w This reduces the amount of cross boundary optimization the
synthesizer must do
w (X) Bad Module Boundary:

Logic A D Q Logic B Logic C D Q Logic D

Module 1 Module 2

At this boundary, the Synthesis tool must decide how much to optimize Logic B
and C together? It is un-wise to let the synthesis tool make a judgement call
about your design. This type of design leads to bigger, slower, and less likely
to work designs

HDL Coding Style 4 - 14

Register Hierarchical Boundaries
w Register Boundary at the output of each module provides a

more stabile, re-useable, and synthesizable design
w Good Module Boundary:

Logic A D Q

Module 1

At this boundary, the Synthesis tool has no decisions to make. Logic B is going
to be synthesized the same every time, regardless of which module is attached
to its inputs or outputs. Additionally, Module 2 can be synthesized and tested
on its own, to insure performance as expected.

Logic B D Q

Module 2

HDL Coding Style 4 - 15

Use Hierarchy to Isolate Technology
w Put technology specific cores in their own hierarchical

blocks to allow for maximum design re-use
— Xilinx block RAMs, distributed RAMs, DLLs, I/Os, clock buffers, global

resets, Coregen modules

w Keep clock domains separated by using hierarchy
— this makes the interaction between clocks very clear in the design
— reduces un-wanted clock confusion
— easier to add timing constraints later
— allows different design section to be synthesized individually, and

tested before they are part of the larger design

w Keep the number of lines of code per module below 400
— the modules are easier to read
— the modules are easier to debug and synthesize.

HDL Coding Style 4 - 16

Use Hierarchy to make
Design Building Blocks

w Build yourself a standard set of functions you can re-use
throughout your design

— muxes, register banks, FIFOs, adders, counters, and other standard
functions

w Compile from the bottom up
— synthesize each low level module on it own the first time
— run these lower levels into the Xilinx tools to get a resource usage

estimate for each module and design sub-section
— be sure each sub-block can meet your requirements

before adding it into the main design: Is it the right size? Is it
fast enough?

HDL Coding Style 4 - 17

Outline

w HDL and Synthesis Concept

w Hierarchy of HDL design

w Latch inference and registers

w Instantiation and Black box

w Synchronous and Asynchronous Design

w Combinatorial and Sequential Logic

w Case V.S. If - elsif

w Others

HDL Coding Style 4 - 18

process (A, B) begin

 if (A = ‘1’) then

Q <= B;

 end if;

end process;

process (A, B) begin

 if (A = ‘1’) then

Q <= B;

 end if;

end process;

Watch for Unintentional Latches

process (C) begin

 case C is

when ‘0’ => Q <=‘1’;

Z <=‘0’;

when others => Q <= ‘0’;

 end case;

end process;

process (C) begin

 case C is

when ‘0’ => Q <=‘1’;

Z <=‘0’;

when others => Q <= ‘0’;

 end case;

end process;

(Missing Z Output)VHDL

What’s wrong with these example coding sections?

(Latch Inferred)

always @ (D) begin

 case (D)

2’b00: Z = 1’b1;

2’b01: Z = 1’b0;

2’b10: S = 1’b1;

 endcase

end

always @ (D) begin

 case (D)

2’b00: Z = 1’b1;

2’b01: Z = 1’b0;

2’b10: S = 1’b1;

 endcase

end

Verilog

(Missing Case)

(Missing Outputs)

w Completely specify all clauses for every case and if statement

w Completely specify all outputs for every case or if statement: Unspecified outputs
are required to retain their old values

w Elaboration will report all generated registers

HDL Coding Style 4 - 19

Implementing Registers (VHDL)
w D Flip Flop
FF: process (CLK)
begin
 if (CLK’event and CLK=‘1’) then
 Q <= D_IN;
 end if;
end process

w Flip-Flop with async. reset
FF_AR: process(RESET,CLOCK)
begin
 if (RESET = ‘1’) then
 Q <= ‘0’
 elsif(CLK’event and CLK=‘1’) then
 Q <= D_IN;
 end if;
end process

w Flip-Flop with async. set
FF_AS: process(RESET,CLOCK)
begin
 if (RESET = ‘1’) then
 Q <= ‘1’
 elsif (CLK’event and CLK=‘1’) then
 Q <= D_IN;
 end if;
end process

w Flip-Flop with sync. set
FF_SS: process(CLOCK)
begin
 if (CLOCK’event and CLOCK=‘1’) then
 if (RESET = ‘1’) then
 Q <= ‘0’
 else
 Q <= D_IN;
 end if;
 end if;
end process

HDL Coding Style 4 - 20

Instantiation
w Instantiation is how you dictate to a synthesis tool that you

want to use a specific component from the Xilinx library
w Instantiation makes your HDL code vendor specific, and

can make behavioral simulation difficult
w Certain Xilinx functions can only be activated by instantiation

— Clock buffers/DLL Unbonded pads
— Boundary scan All types of RAM modules
— Start-up block Virtex Select I/O

w Instantiated components might need a don’t touch or black
box attribute to prevent them from being changed or removed
by the synthesis tool

HDL Coding Style 4 - 21

Using Black Boxes

w Sometimes Black Boxes Need to be Instantiated:
— RAM and ROM
— IP Cores (PCI, DSP, etc.)
— Other Hard Macros

w Black Boxes are Empty Placeholders in the Design Hierarchy

w Black Box Functions are Linked by the Place & Route Tool

HDL Coding Style 4 - 22

Using Black Boxes

component MY_BLACK_BOX
 port(a, b: in std_logic; y, z: out std_logic);

end component;

...

u1: MY_BLACK_BOX

 port map(a => a_int, b => b_int,

 y => y_int, z => z_int);

component MY_BLACK_BOX
 port(a, b: in std_logic; y, z: out std_logic);

end component;

...

u1: MY_BLACK_BOX

 port map(a => a_int, b => b_int,

 y => y_int, z => z_int);

VHDL Requires a
Component Declaration
for the Port Directions

module top(
...

MY_BLACK_BOX u1(.a(a_int), .b(b_int),

 .y(y_int), .z(z_int));

...

endmodule

module MY_BLACK_BOX(a, b, y, z);

input a, b;

output y, z;

endmodule

module top(
...

MY_BLACK_BOX u1(.a(a_int), .b(b_int),

 .y(y_int), .z(z_int));

...

endmodule

module MY_BLACK_BOX(a, b, y, z);

input a, b;

output y, z;

endmodule

Verilog Requires an
Empty Module Definition
for the Port Directions

HDL Coding Style 4 - 23

Think Synchronous Hardware

ADDR
DECODEADDR_IN

GND
ACK

ACK_SET

AS

+5

ACK_CLR

Asynchronous
Address
Decoder

How am I going to
synthesize this?

How am I going to
synthesize this?

w Synchronous designs run smoothly through synthesis, simulation
and place & route.

w Asynchronous designs may require instantiation and placement to
verify. If asynchronous logic is necessary, isolate into separate
blocks.

HDL Coding Style 4 - 24

Think RTL Description
of Synchronous Hardware

w Describe the register-to-register functionality of the design (i.e., describe the
function of the combinational logic between registers).

entity GIZMO is
...

architecture RTL of GIZMO is
begin
 COMBO1 : process (A) ...
 REG1 : process (CLK) ...
 COMBO2 : process (B) ...
 REG2 : process (CLK) ...
end RTL;

entity GIZMO is
...

architecture RTL of GIZMO is
begin
 COMBO1 : process (A) ...
 REG1 : process (CLK) ...
 COMBO2 : process (B) ...
 REG2 : process (CLK) ...
end RTL;

Verilog RTL Code

module GIZMO (A, CLK, Z);
...
always@ (A) begin : COMBO1...
always@ (posedge CLK)...
always@ (B) begin : COMBO2...
always@ (posedge CLK) ...
end module;

module GIZMO (A, CLK, Z);
...
always@ (A) begin : COMBO1...
always@ (posedge CLK)...
always@ (B) begin : COMBO2...
always@ (posedge CLK) ...
end module;

COMBO1 COMBO2

GIZMO

HDL Coding Style 4 - 25

Separate Combinational from
Sequential

— Easy to read and “self-documenting”
— Follows RTL coding style.

library IEEE;
use IEEE.std_logic_1164.all;

entity EXAMPLE is
port (DATA1,DATA2,CLK: in STD_LOGIC;
 Q: out STD_LOGIC);
end EXAMPLE;

architecture SEPARATE of EXAMPLE is
signal DATA: STD_LOGIC_VECTOR(7 downto
0);
begin
 COMBO: process (DATA1, DATA2) begin
 DATA <= GOBBLEDYGOOK (DATA1, DATA2);
 end process COMBO;

 SEQUENTIAL: process (CLK) begin
 if (CLK’EVENT and CLK = ‘1’) then

 Q <= DATA;
 end if;
 end process SEQUENTIAL;
end SEPARATE

library IEEE;
use IEEE.std_logic_1164.all;

entity EXAMPLE is
port (DATA1,DATA2,CLK: in STD_LOGIC;
 Q: out STD_LOGIC);
end EXAMPLE;

architecture SEPARATE of EXAMPLE is
signal DATA: STD_LOGIC_VECTOR(7 downto
0);
begin
 COMBO: process (DATA1, DATA2) begin
 DATA <= GOBBLEDYGOOK (DATA1, DATA2);
 end process COMBO;

 SEQUENTIAL: process (CLK) begin
 if (CLK’EVENT and CLK = ‘1’) then

 Q <= DATA;
 end if;
 end process SEQUENTIAL;
end SEPARATE

module EXAMPLE (DATA1,DATA2,CLK,Q)
input DATA1,DATA2,CLK;
output Q;
reg DATA, Q;

always @ (DATA1 or DATA2)
 begin: COMBO
 DATA = GOBBLEDYGOOK (DATA1,DATA2);
 end

always @ (posedge CLK)
 begin: SEQUENTIAL
 Q <= DATA;
 end
endmodule

module EXAMPLE (DATA1,DATA2,CLK,Q)
input DATA1,DATA2,CLK;
output Q;
reg DATA, Q;

always @ (DATA1 or DATA2)
 begin: COMBO
 DATA = GOBBLEDYGOOK (DATA1,DATA2);
 end

always @ (posedge CLK)
 begin: SEQUENTIAL
 Q <= DATA;
 end
endmodule

GOBBLEDY
-GOOK

DATA
QDATA1

DATA2

CLK

Combinational Logic

Sequential Logic

HDL Coding Style 4 - 26

Clock Enable Coding
w Coding Style will determine if clock enables are used
w Makes timing constraints easier to control

• VHDL
FF_AR_CE: process(RESET,CLK)
begin
 if (RESET = ‘1’) then
 Q <= ‘0’
 elsif (CLK’event and CLK=‘1’) then
 if (ENABLE = ‘1’) then
 Q <= D_IN;
 end if;
 end if;
end process

• Verilog
always @(posedge CLOCK or posedge RESET)
 if (RESET)
 Q = 0;
 else if (ENABLE)
 Q = D_IN;

HDL Coding Style 4 - 27

-- No parentheses
OUT1 <= I1 + I2 + I3 + I4

-- No parentheses
OUT1 <= I1 + I2 + I3 + I4

-- With parentheses
OUT1 <= (I1 + I2) + (I3 + I4)

-- With parentheses
OUT1 <= (I1 + I2) + (I3 + I4)

I1

I2

I3

I4

OUT1

I4

I1

I2

I3

OUT1

w Parentheses to control logical structure

Combinatorial Logic:
Say what you mean

3 Layers of Logic 2 Layers of Logic

HDL Coding Style 4 - 28

Combinatorial Logic:
Say what you mean

w Don’t use a process (VHDL) or always block (Verilog) when
a concurrent assignment can be used.

Always @ (A or B or C)
 begin
 if(A)
 Y = C;
 else
 Y = B;
 end

Process(A,B,C)
 begin
 if (A = ‘1’) then
 Y <= C;
 else
 Y <= B;
 end if;
end process;

A Better way...
Y <= A ? C : B; Y <= C when A = ‘1’ else B;

Verilog VHDL

HDL Coding Style 4 - 29

Synthesis of if-then-elsif
Statement

process (SEL, A,B,C,D) begin
if (SEL(2) = ‘1’) then

OUTI <= A;
elsif (SEL(1) = ‘1’) then

OUTI <= B;
elsif (SEL(0) = ‘1’) then

OUTI <= C;
else
 OUTI <= D;
end if;

end process;

process (SEL, A,B,C,D) begin
if (SEL(2) = ‘1’) then

OUTI <= A;
elsif (SEL(1) = ‘1’) then

OUTI <= B;
elsif (SEL(0) = ‘1’) then

OUTI <= C;
else
 OUTI <= D;
end if;

end process;

OUTI
0
1

SEL[1]=‘1’

SEL[0]=‘1’

SEL[2]=‘1
’

0
1

0
1

 D

 C

SEL

 B

 A

always@ (SEL or A or B or C or D)
if (SEL[2] == 1’b1)

OUTI = A;
else if (SEL[1] == 1’b1)

OUTI = B;
else if (SEL[0] == 1’b1)

OUTI = C;
else
 OUTI = D;

always@ (SEL or A or B or C or D)
if (SEL[2] == 1’b1)

OUTI = A;
else if (SEL[1] == 1’b1)

OUTI = B;
else if (SEL[0] == 1’b1)

OUTI = C;
else
 OUTI = D;

Verilog Code

VHDL Code

Hardware Result

w if-then-elseif statements imply priority-encoded MUXs.

HDL Coding Style 4 - 30

Critical Inputs in IF/ELSE Statements
w Fast critical signals
IF critical_signal THEN do_a

 ELSIF cond_b THEN do_b

 ELSIF cond_c THEN do_c

 ELSIF cond_d THEN do_d

 ELSE do_e

END IF;

w Slows down critical signals
IF cond_b THEN do_b

 ELSIF cond_c THEN do_c

 ELSIF cond_d THEN do_d

 ELSIF critical_signal THEN do_a

 ELSE do_e

END IF;

do_d

do_e

cond_d
cond_c

do_c

cond_b

do_b

critical_signal

do_a

output

HDL Coding Style 4 - 31

Case Statements I
w All branches of a case statement must be defined

— enumerated states can all be defined
— std_logic_vector has several more values than ‘0’ or ‘1’

w If there are conditions that have “don’t care”, set output values to:
– VHDL: Pick ‘1’ or ‘0’ based on logic reduction or ‘-’ (don’t care) for std_logic
– Verilog: use don’t care value ex: 1’bX

w Avoid using ranges in your HDL code - creates comparitors
case COUNTER is
 when 0 to 9 =>
 display <= SEVEN_SEG(COUNTER);

w Use explicit numbers - creates a decoder
case COUNTER is
 when 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9 =>
 DISPLAY <= SEVEN_SEG(COUNTER)

HDL Coding Style 4 - 32

Case Statements II

w Case statements in combinatorial process(VHDL) or always
statement (Verilog):
— all outputs must be defined in all branches of the case

statement to prevent latches.
— use a default statement before case statement to prevent latches

w Case statements in sequential process(VHDL) or always
statement (Verilog):
— clock enables generated if outputs are not defined in all branches
— this is not “wrong”, but might generate a long clock enable

equation
— use a default statement before case statement to prevent clock

enables

HDL Coding Style 4 - 33

Synthesis of case Statement
w Case statements imply parallel mux function.

always@(SEL or A or B or C or D)
begin

case (SEL)
2’b00 : OUTC = A;
2’b01 : OUTC = B;
2’b10 : OUTC = C;
default : OUTC = D;

endcase
end

always@(SEL or A or B or C or D)
begin

case (SEL)
2’b00 : OUTC = A;
2’b01 : OUTC = B;
2’b10 : OUTC = C;
default : OUTC = D;

endcase
end

process (SEL,A,B,C,D) begin
case SEL is

when “00” => OUTC <= A;
when “01” => OUTC <= B;
when “10” => OUTC <= C;
when others => OUTC <= D;

end case;
end process;

VHDL Code

Verilog Code

00
01
10
11

A

SEL

OUTC

2

B
C
D

HDL Coding Style 4 - 34

Arithmetic Operators

w Operators Inferred from HDL
— Adder, Subtractor, AddSub (+, -)
— Multiplier (*)
— Comparators (>, >=, <, <=, =, /=)
— Incrementer, Decrementer, Incdec (+1, -1)
— Counters

HDL Coding Style 4 - 35

Magnitude Compare
w This can be done as subtractor with sign extension on the

inputs. Below is A > B, reverse the subtraction to get A < B
w The subtractor will be created using the carry chain inside the

FPGA, writing A > B in your code will be Bigger & Slower

Verilog:
wire [7:0] A, B;
reg [8:0] A_ext, B_ext;
reg [8:0] sub;
reg mag_comp;

always@(A or B)
 begin
 A_ext <= {A(7),A};
 B_ext <= {B(7),B};
 sub <= A_ext - B_ext;
 mag_comp <= sub(8);
 end

VHDL:
signal A: std_logic_vector (7 downto 0);
signal B: std_logic_vector (7 downto 0);
signal A_ext: std_logic_vector (8 downto 0);
signal B_ext: std_logic_vector (8 downto 0);
signal sub: std_logic_vector (8 downto 0);
signal mag_comp: std_logic;
process (A, B) begin
 A_ext <= (A(7)&A);
 B_ext <= (B(7)&B);
 sub <= A_ext - B_ext;
 mag_comp <= sub(8);
end process;

HDL Coding Style 4 - 36

Operator Balancing

w Depends on parenthesis

(A*B)*(C*D) A*B*C*D

HDL Coding Style 4 - 37

Sharing of Arithmetic Operators
w Operators can be Shared Within:

— - A Process (VHDL)
— - An always Block (Verilog)

process (S,A,B,C)
begin
 if (S) then
 Z <= A+B;
 else
 Z <= A+C;
 end if;
end process;

S

MUX

A

C

B

Z

A

Z
B

C

MUX

A

S

With Sharin
g

Without Sharing

16

Smaller

Larger

16
+

+

+

HDL Coding Style 4 - 38

FSM Encoding

w FPGA Express: manual extraction and re-encoding
using FSM Compiler

You can choose one-hot,
binary, or zero one-hot

 encoding

HDL Coding Style 4 - 39

VHDL: Avoid Integers

w Integers are 32 bits wide
w Integer Types Default to Signed

w Use constrained std_logic_vector instead
— e.g. std_logic_vector(7 downto 0)
— include arithmetic packages:
— ieee.std_logic_unsigned.all
— ieee.std_logic_signed.all

HDL Coding Style 4 - 40

Synopsys Translation Directives

w Useful for ignoring simulation constructs

w VHDL
— -- pragma translate_off or -- synopsys translate_off to start
— -- pragma translate_on or -- synopsys translate_on to finish
— use synthesis_off/synthesis_on to check ignored code for

syntax

w Verilog
— // synopsys translate_off to start
— // synopsys translate_on to finish
— Turn Verilog Pre-Processor (VPP) ON to use ‘ifdef

HDL Coding Style 4 - 41

How to implement a Synchronous Reset

w This must be declared at the top of the VHDL file as shown:
 library synopsys;
 use synopsys.attributes.all;

w Then attach the "sync_set_reset" attribute to the reset signal.

w Here is the section of VHDL code that will infer the
synchronous reset:

attribute sync_set_reset of RESET: signal is "true";

HDL Coding Style 4 - 42

VHDL Example
 library synopsys;
 use synopsys.attributes.all;
….
architecture COUNT_ARCH of COUNTER is

 signal COUNT: STD_LOGIC_VECTOR (7 downto 0);
 attribute sync_set_reset of RESET: signal is "true";

 begin
 process (CLK, RESET)
 begin
 if (CLK'event and CLK='1') then
 if (RESET='1') then
 COUNT <= "00000000";
 else
 COUNT <= COUNT + 1;
 end if;
 end if;
 end process;

HDL Coding Style 4 - 43

Verilog Example

w No library needs to be defined for Verilog.

//synopsys sync_set_reset "RESET"

 always @(posedge CLK)
 if (RESET)
 COUNT = 8'b00000000;
 else
 COUNT = COUNT + 1;

