
Zynq-7000 All 
Programmable SoC 
Architecture Porting 
Guide

UG1181 (v1.0)  June 25, 2015



Architecture Porting Guide www.xilinx.com 2
UG1181 (v1.0)  June 25, 2015

Revision History
The following table shows the revision history for this document.

Date Version Revision

06/25/2015 1.0 Initial Xilinx release.

http://www.xilinx.com


Architecture Porting Guide www.xilinx.com 3
UG1181 (v1.0)  June 25, 2015

Table of Contents
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 1: Introduction

Chapter 2: Porting Considerations
ARM Cortex-A9 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Chapter 3: Feature Comparison Across Architectures
Architectural Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
Address Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
Detailed Porting Guides: MIPS, PowerPC, Intel, and Renesas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

Appendix A: Additional Resources and Legal Notices
Xilinx Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
Solution Centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
Please Read: Important Legal Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=3


Architecture Porting Guide www.xilinx.com 4
UG1181 (v1.0)  June 25, 2015

Chapter 1

Introduction
This document supports Xilinx® Zynq®-7000 All Programmable (AP) SoC customers that 
want to port embedded software from non ARM based processors to an ARM processing 
architecture. This porting guide references documentation on porting for PowerPC®, 
Intel®, Renesas-SH, and MIPS processors to ARM processors. (Zynq-7000 AP SoC contains 
the ARM® Cortex®-A9 dual core processor.)

The ARM Cortex-A9 processor is a popular general purpose choice for low-power or 
thermally constrained, cost-sensitive devices. The processor is a mature option and remains 
a very popular choice for smart phones, digital TV, and both consumer and enterprise 
applications enabling the Internet of Things. The Cortex-A9 processor is available with a 
range of supporting ARM technology. The Cortex-A9 processor is designed for a range of 
products as a result of its scalable size and configuration options:

• Mainstream smart phones

• Tablets

• Set-top boxes

• Home media players

• Automotive infotainment

• Routers

The Zynq-7000 AP SoC family is based on Xilinx All Programmable SoC architecture. These 
products integrate a feature-rich dual-core ARM Cortex-A9 MPCore™ based processing 
system (PS) and Xilinx programmable logic (PL) in a single device, built on a 
state-of-the-art, high-performance, low-power (HPL), 28 nm, and high-k metal gate (HKMG) 
process technology. The ARM Cortex-A9 MPCore multicore processors are the heart of the 
PS, which also includes on-chip memory, external memory interfaces, and a rich set of I/O 
peripherals.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=4


Chapter 2

Porting Considerations
Figure 2-1 shows the Zynq®-7000 All Programmable (AP) SoC overview. In this diagram, 
the box marked is the ARM® Cortex™-A9 processor and its components.

The ARM Cortex-A9 processor that is integrated into Zynq-7000 AP SoC is dual core. Each 
core contains separate L1 caches, however they share same L2 cache.

X-Ref Target - Figure 2-1

Figure 2-1: Zynq-7000 All Programmable SoC Overview
Architecture Porting Guide www.xilinx.com 5
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=5


Chapter 2: Porting Considerations
ARM Cortex-A9 Features
The ARM processor features that must be considered are listed in the following sections.

CPU Modes
At any given time, the CPU can be in only one mode, but it can switch modes due to external 
events (interrupts) or programmatically.

• User mode: The only non-privileged mode.

• FIQ mode: A privileged mode that is entered whenever the processor accepts an FIQ 
interrupt.

• IRQ mode: A privileged mode that is entered whenever the processor accepts an IRQ 
interrupt.

• Supervisor (svc) mode: A privileged mode entered whenever the CPU is reset or when 
an SVC instruction is executed.

• Abort mode: A privileged mode that is entered whenever a prefetch abort or data abort 
exception occurs.

• Undefined mode: A privileged mode that is entered whenever an undefined instruction 
exception occurs.

• System mode (ARMv4 and above): The only privileged mode that is not entered by an 
exception. It can only be entered by executing an instruction that explicitly writes to 
the mode bits of the Current Program Status Register (CPSR).

• Monitor mode (ARMv6 and ARMv7 Security Extensions, ARMv8 EL3): A monitor mode is 
introduced to support TrustZone® extension in ARM cores.

• Hyp mode (ARMv7 Virtualization Extensions, ARMv8 EL2): A hypervisor mode that 
supports virtualization requirements for the non-secure operation of the CPU.

TrustZone
The Security Extensions, marketed as TrustZone technology, is in Cortex-A9 architecture. It 
provides a low-cost alternative to adding another dedicated security core to an SoC by 
providing two virtual processors backed by hardware-based access control. This lets the 
application core switch between two states, referred to as worlds (to reduce confusion with 
other names for capability domains), to prevent information from leaking from the more 
trusted world to the less trusted world. This world switch is generally orthogonal to all other 
capabilities of the processor, thus each world can operate independently of the other while 
using the same core. Memory and peripherals are then made aware of the operating world 
of the core and can use this to provide access control to secrets and code on the device.
Architecture Porting Guide www.xilinx.com 6
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=6


Chapter 2: Porting Considerations
Typical applications of TrustZone technology are to run a rich operating system in the less 
trusted world, and smaller security-specialized code in the more trusted world, allowing 
much tighter digital rights management for controlling the use of media on ARM-based 
devices, and preventing any unapproved use of the device.

In practice, because the specific implementation details of TrustZone are proprietary and 
have not been publicly disclosed for review, it is unclear what level of assurance is provided 
for a given threat model.

Thumb-2 Instruction Set
In Thumb state, the processor executes the Thumb instruction set, a compact 16-bit 
encoding for a subset of the ARM instruction set. Most of the Thumb instructions are 
directly mapped to normal ARM instructions. The space-saving comes from making some of 
the instruction operands implicit and limiting the number of possibilities compared to the 
ARM instructions executed in the ARM instruction set state.

In Thumb, the 16-bit opcodes have less functionality. For example, only branches can be 
conditional, and many opcodes are restricted to accessing only half of all of the CPU's 
general-purpose registers. The shorter opcodes give improved code density overall, even 
though some operations require extra instructions. In situations where the memory port or 
bus width is constrained to less than 32 bits, the shorter Thumb opcodes allow increased 
performance compared with 32-bit ARM code, because less program code might need to 
be loaded into the processor over the constrained memory bandwidth.

Thumb-2 extends the limited 16-bit instruction set of Thumb with additional 32-bit 
instructions to give the instruction set more breadth, thus producing a variable-length 
instruction set. A stated aim for Thumb-2 was to achieve code density similar to Thumb with 
performance similar to the ARM instruction set on 32-bit memory.

SIMD Support (NEON)
The Advanced SIMD extension (aka NEON Media Processing Engine (MPE)) is a combined 
64- and 128-bit SIMD instruction set that provides standardized acceleration for media and 
signal processing applications. NEON is included in Cortex-A9 of Zynq-7000 AP SoC. It 
features a comprehensive instruction set, separate register f iles, and independent 
execution hardware. NEON supports 8-, 16-, 32-, and 64-bit integer and single-precision 
(32-bit) floating-point data and single instruction multiple data (SIMD) operations for 
handling audio and video processing as well as graphics and gaming processing. In NEON, 
the SIMD supports up to 16 operations at the same time. The NEON hardware shares the 
same floating-point registers as used in VFP. NEON can execute 128 bits at a time, however 
though the ARM Cortex-A9 processor supports 128-bit vectors it executes with 64 bits at a 
time. NEON can execute MP3 audio decoding on CPUs running at 10 MHz and can run the 
GSM adaptive multi-rate (AMR) speech codec at no more than 13 MHz.
Architecture Porting Guide www.xilinx.com 7
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=7


Chapter 2: Porting Considerations
Vector Floating-Point Unit (VFPU) - Single and Double Precision
This is the floating-point coprocessor extension to the ARM architecture.

Caches
• L1 data cache 32 KB, L1 instruction cache 32 KB 

° Both are separate, 4-way set associative

• L2 512 KB cache (common to data and instruction)

° 8-way set associative

MMU
The memory management unit (MMU) works with the L1 and L2 memory system to 
translate virtual addresses to physical addresses. It also controls accesses to and from 
external memory.

• Page table entries support 4 KB, 64 KB, 1 MB, and 16 MB

• 16 domains

• Global and application-specif ic identif iers remove the requirement for context switch 
translation lookup buffer (TLB) flushes

• Extended permissions check capability.

OCM
The on-chip memory (OCM) module contains 256 KB of RAM. It supports two 64-bit AXI 
slave interface ports, one dedicated to CPU/accelerator coherency port (ACP) access 
through the application processing unit (APU) snoop control unit (SCU), and the other 
shared by all other bus masters within the processing system (PS) and programmable logic 
(PL). The bootROM memory is used exclusively by the boot process and is not visible to the 
user.

The address range assigned to the OCM can be modified to exist in the f irst or last 256 KB 
of the address map, to flexibly handle the ARM low or high exception vector modes. In 
addition, the CPU and ACP AXI interfaces can have their lowest 1 MB address range 
accesses diverted to DDR, using the SCU address filtering feature.
Architecture Porting Guide www.xilinx.com 8
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=8


Chapter 2: Porting Considerations
Interrupts
• Supported by Global Interrupt Controller (GIC) from ARM.

• 3 watch dog timers (WDTs)—1 for core0, 1 for core1, and 1 for system.

• Each core supports a few private peripheral interrupts (PPIs) and a few shared 
peripheral interrupts (SPIs).

• Interrupts can be prioritized.

• The CPU can go into a wait state (WFI) where it waits for an interrupt (or event) signal 
to be generated.

System Control Coprocessor (CP15)
The system control coprocessor, CP15, controls and provides status information for the 
functions implemented in the processor. The main functions of the system control 
coprocessor are:

• Overall system control and configuration

• MMU configuration and management

• Cache configuration and management

• System performance monitoring

Timers
Each Cortex-A9 processor core has its own private 32-bit timer and 32-bit watchdog timer. 
Both processor cores share a global 64-bit timer. 

All these timers are always clocked at 1/2 of the CPU frequency (CPU_3x2x).

On the system level, there is a 24-bit watchdog timer and two 16-bit triple timer/counters. 
The system watchdog timer is clocked at 1/4 or 1/6 of the CPU frequency (CPU_1x), or can 
be clocked by an external signal from an MIO pin or from the PL. 

The two triple timers/counters are always clocked at 1/4 or 1/6 of the CPU frequency 
(CPU_1x), and are used to count the widths of signal pulses from an MIO pin or from the PL.
Architecture Porting Guide www.xilinx.com 9
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=9


Chapter 2: Porting Considerations
Instruction Set
The ARM is a reduced instruction set computer (RISC) processor. The instruction set has the 
following features:

• Load/store architecture.

• Supports unaligned accesses for half-word and single-word load/store instructions with 
some limitations, such as no guaranteed atomicity.

• Uniform 16 × 32-bit register f ile (including the Program Counter, Stack Pointer, and the 
Link Register).

• Fixed instruction width of 32 bits to ease decoding and pipelining, at the cost of 
decreased code density.

• The Thumb instruction set added 16-bit instructions and increased code density.

• Mostly single clock-cycle execution.

To compensate for the simpler design, compared with architectures like Intel, some 
additional design features were used:

• Conditional execution of most instructions reduces branch overhead and compensates 
for the lack of a branch predictor.

• Arithmetic instructions alter condition codes only when desired.

• 32-bit barrel shifter can be used without performance penalty with most arithmetic 
instructions and address calculations.

• Powerful indexed addressing modes.

• A link register supports fast leaf function calls.

• A simple but fast 2-priority-level interrupt subsystem has switched register banks.
Architecture Porting Guide www.xilinx.com 10
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=10


Chapter 2: Porting Considerations
Register Set
The register set is listed in the following table.

Registers R0 through R7 are the same across all CPU modes; they are never banked.

R13 and R14 are banked across all privileged CPU modes except System mode. That is, each 
mode that can be entered because of an exception has its own R13 and R14. These registers 
generally contain the stack pointer and the return address from function calls, respectively.

Aliases

• R13 is also referred to as SP, the Stack Pointer.

• R14 is also referred to as LR, the Link Register.

• R15 is also referred to as PC, the Program Counter.

Registers Across CPU Modes

usr sys svc abt und irq fiq

R0

R1

R2

R3

R4

R5

R6

R7

R8 R8_fiq

R9 R9_fiq

R10 R10_fiq

R11 R11_fiq

R12 R12_fiq

R13 R13_svc R13_abt R13_und R13_irq R13_fiq

R14 R14_svc R14_abt R14_und R14_irq R14_fiq

R15

CPSR

SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_fiq
Architecture Porting Guide www.xilinx.com 11
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=11


Chapter 2: Porting Considerations
The Current Program Status Register (CPSR) has the following 32 bits:

• M (bits 0-4) is the processor mode bits.

• T (bit 5) is the Thumb state bit.

• F (bit 6) is the FIQ disable bit.

• I (bit 7) is the IRQ disable bit.

• A (bit 8) is the imprecise data abort disable bit.

• E (bit 9) is the data endianness bit.

• IT (bits 10-15 and 25-26) is the if-then state bits.

• GE (bits 16-19) is the greater-than-or-equal-to bits.

• DNM (bits 20-23) is the do not modify bits.

• J (bit 24) is the Java state bit.

• Q (bit 27) is the sticky overflow bit.

• V (bit 28) is the overflow bit.

• C (bit 29) is the carry/borrow/extend bit.

• Z (bit 30) is the zero bit.

• N (bit 31) is the negative/less than bit.

When you plan to move software from other architectures to ARM, there are certain 
mandatory and optional considerations, which are described in the next chapter.
Architecture Porting Guide www.xilinx.com 12
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=12


Chapter 3

Feature Comparison Across Architectures

Architectural Comparison
The architectures are compared in the following table.

Feature ARMv7 PowerPC MIPS Renesas-SH x86

Endianness
Big

Little
Big

Little
Big

Little
Big

Little
Little

Bits 32

64 (32→64)
It is 64-bit 

architecture with 
a 32-bit subset.

64 (32→64)
It is 64-bit 

architecture with 
a 32-bit subset.

32 16, 32, 64

Data bits 3 3 1, 2, 3 2
2 (integer)

3 (AVX-512)

Operands 
movement Reg - Reg Reg - Reg Reg - Reg

Reg - Reg
Reg - Mem

Reg - Mem

Design RISC RISC RISC RISC CISC

Registers 16 (including PC, 
SP) 32 32 x 4 banks 

(including zero) 16
6 in 16-bit
8 in 32-bit

16 in 64-bit

Instruction bits

ARM: 32 bits
Thumb: 16 bits
Thumb2: 16–32 

bits

32 bits 32 bits 16–32 bits Variable

Extensions

NEON
VFP

TrustZone
Jazelle
LPAE

AltiVec, APU, 
VSX, Cell

MDMX
MIPS-3D

None

x87, IA-32, MMX, 
3DNow!, SSE, 

SSE2, PAE, 
x86-64, SSE3, 

SSE4, SSE5, AVX, 
AES, FMA
Architecture Porting Guide www.xilinx.com 13
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=13


Chapter 3: Feature Comparison Across Architectures
Function Calling Conventions
Usually source code is written in a high level language, such as C. In that case, the source 
code can be ported across architectures by changing the tool chain appropriately. The 
compilers take care of generating the machine code suitable for new architecture.

However, sometimes the code need to be fine-tuned for various optimizations. In that case, 
the developer needs to know the low level details such as code generation methods, 
registers usage, calling sequences, etc.

The function calling conventions across architectures are compared in the following table.

Convention ARM PowerPC MIPS Renesas-SH x86

Function 
parameters R0–R3

R3–R10
Subsequent args 

- stack

First 4 args - 
registers 
($a0–$a3)

Subsequent args 
- stack

R4–R7 Stack (ESS, ESP)

Order of 
parameters 

passed
Left to right Left to right Left to right Left to right Right to left

Normal return 
values Register (R0) R3 One register 

($v0) R0 EIP

Long (complex) 
return value

Registers 
(R0–R4) R3–R4 Two registers 

($v0, $v1) R0 EIP

Stack pointer R13 R1 Register ($sp) R15 ESS, ESP

Return address R14 (Link Reg) LR 
(saved on stack) Register ($ra) Register (PR) EIP

How local 
variables are 

located
Stack Stack Stack Stack Stack

Non-preserved 
registers R4–R8

R0, R2–R10, R12
FPR0–FPR13
LR, CTR, XER, 

CR0–CR7

$0–$15
$24–$25

R1–R7 All registers

Registers 
considered to be 

volatile
R4–R11 R3–R12

$8–$15
$24–$25

R1–R3 All registers
Architecture Porting Guide www.xilinx.com 14
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=14


Chapter 3: Feature Comparison Across Architectures
Setting Up For and Cleaning Up After a Function Call
The RISC processors (ARM, MIPS, PowerPC, and Renesas-SH) follow the standards 
ABI/EABI (1) for the function calling sequence, but with minor differences. Table 3-1 lists the 
calling procedure for each architecture.

1. application binary interface/embedded-application binary interface

Table 3-1: Function Calling Procedure for Each Architecture 

Architecture Prologue (prepare to invoke function call) Epilogue (prepare to exit function call)

ARM

Push r4 to r11 to the stack.
Push the return address in r14, to the stack.
Copy args (r0–r3) to the local scratch regs (r4–r11).
Allocate other local variables to the remaining local 
scratch regs (r4 to r11).
Call other subroutines as necessary using BL.

Put the result in r0.
Pull r4 to r11 from the stack.
Pull the return address to the program 
counter r15.

MIPS

Reserve space for the stack frame. The stack frame 
can have 5 sections maximum:
• Argument section,
• Saved register section
• Return address section
• Padding section
• Local data storage section.
Set up a virtual frame pointer. The virtual frame 
pointer is sp($29) added to the frame size.
Set a bit in the bitmask for each general purpose 
register saved.
Store any registers that need to be saved.
Set instruction pointer to function beginning.
Start executing the function.

Place result in $v0.
Issue a restore for each register saved in 
the prologue.
Return from the procedure.
Architecture Porting Guide www.xilinx.com 15
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=15


Chapter 3: Feature Comparison Across Architectures
PowerPC

Called function is responsible for allocating its own 
stack frame, making sure to preserve 16-byte 
alignment in the stack.
Decrements the stack pointer to account for the new 
stack frame and writes the previous value of the stack 
pointer to its own linkage area, which ensures the 
stack can be restored to its original state after 
returning from the call.
Saves all nonvolatile general purpose and 
floating-point registers into the saved registers area.
Saves the link register and condition register values 
in the caller's linkage area, if needed.
The stack frame contain four sections, in the 
following order:
• Parameter area
• Linkage area
• Saved registers
• Local variables
Execute the function code.

Restores the nonvolatile general purpose 
and floating-point registers that were 
saved in the stack frame.
Nonvolatile registers are saved in the new 
stack frame before the stack pointer is 
updated, only when they f it within the 
space beneath the stack pointer, where a 
new stack frame would normally be 
allocated, also known as the red zone. The 
red zone is, by definition, large enough to 
hold all nonvolatile general purpose and 
floating-point registers but not the 
nonvolatile vector registers.
Restores the condition register and link 
register values that were stored in the 
linkage area.
Restores the stack pointer to its previous 
value.
Returns control to the calling routine using 
the address stored in the link register.

x86

Pushes the old base pointer onto the stack.
Gets new base pointer value which is set in the next 
step and is always pointed to this location.
Assigns the value of stack pointer (which is pointed to 
the saved base pointer and the top of the old stack 
frame) into base pointer such that a new stack frame 
is created on top of the old stack frame (i.e., the top 
of the old stack frame becomes the base of the new 
stack frame).
Moves the stack pointer further. The stack pointer is 
decreased to make room for variables (i.e., the 
function's local variables).
Executes the function code.

Replaces the stack pointer with the current 
base (or frame) pointer, so the stack 
pointer is restored to its value before the 
prologue.
Pops the base pointer off the stack, so it is 
restored to its value before the prologue.
Returns to the calling function by popping 
the previous frame's program counter off 
the stack and jumping to it.

Renesas-SH

A sequence of zero or more instructions that save the 
incoming argument values from R4–R7 and FR4–FR11 
to the argument home locations.
A sequence of zero or more instructions that push all 
permanent registers to be saved and the return 
address (PR).
A sequence of one or more instructions that set up 
the frame pointer.
A sequence of zero or more instructions that allocate 
the remaining stack frame space for local variables, 
compiler-generated temporaries, and the 
argument-build area by subtracting a 4-byte aligned 
offset from R15.
Execute the function code.

A single add instruction that increments 
the frame pointer.
A sequence of instructions that modify R15 
by referencing it in the destination 
operand of the instruction or in a 
post-increment memory address operand 
of the instruction.

Table 3-1: Function Calling Procedure for Each Architecture (Cont’d)

Architecture Prologue (prepare to invoke function call) Epilogue (prepare to exit function call)
Architecture Porting Guide www.xilinx.com 16
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=16


Chapter 3: Feature Comparison Across Architectures
The following sections describe architectural considerations.

Interrupt Models
The interrupt sources in these architectures do not follow a specif ic standard. Each of them 
have defined their set of exceptions based on the resources available and their target 
applications.

However, they are broadly divided into 2 groups—software exceptions and external events. 
The following table describes the interrupts of each architecture in these two groups.

Type of 
Exception ARM MIPS PowerPC x86 Renesas-SH

Exceptions due 
to instructions

SWI
Undefined 
instruction
Prefetch abort
Data abort

SYS
OV
TR

Critical input
Machine check
System call

Divide error
Break point
Invalid opcode
Segment not 
present
Stack segment 
fault
General 
protection fault
Page fault
Machine check

TRAP, 
UBRKAFTER

Exceptions due 
to external world

Reset
IRQ
FIQ

Reset
NMI
Interrupt
AdEL
AdES
TLBL
TLBS
ICache error
DCache error

Data storage
Instruction 
storage
External 
alignment 
program
Floating point
PITimer
FITimer
WDTimer
TLB Miss
Debug

NMI
User-defined 
interrupts

Reset:
POWERON, 
MANRESET, 
HUDIReset, 
ITLBMULTIHIT, 
OLTBMULTIHIT
General:
UBRKBEFORE, 
IADDERR, 
ITLBMISS, 
EXECPROT, 
RESINST, 
ILLSLOT, FPUDIS, 
SLOTFPUDIS, 
RADDERR, 
WADDERR, 
READPROT, 
FPUEXC, 
FIRSTWRITE
Interrupt:
NMI, IRLINT, 
PERIPHINT
Architecture Porting Guide www.xilinx.com 17
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=17


Chapter 3: Feature Comparison Across Architectures
Address Maps

ARM Cortex-A9 Address Maps in the Zynq-7000 AP SoC
Table 3-2 shows the system-level address map. Refer to Zynq-7000 All Programmable SoC 
Technical Reference Manual (UG585) [Ref 1] for more details on the ARM system address 
map.

Table 3-2: System-Level Address Map 

Address Range CPUs and 
ACP AXI_HP Other Bus 

Masters Notes

0000_0000 to 0003_FFFF 

OCM OCM OCM Address not f iltered by SCU and OCM is mapped 
low

DDR OCM OCM Address f iltered by SCU and OCM is mapped low

DDR Address f iltered by SCU and OCM is not mapped 
low

Address not f iltered by SCU and OCM is not 
mapped low

0004_0000 to 0007_FFFF 
DDR Address f iltered by SCU

Address not f iltered by SCU

0008_0000 to 000F_FFFF
DDR DDR DDR Address f iltered by SCU

DDR DDR Address not f iltered by SCU

0010_0000 to 3FFF_FFFF DDR DDR DDR Accessible to all interconnect masters

4000_0000 to 7FFF_FFFF PL PL General Purpose Port #0 to the PL, M_AXI_GP0

8000_0000 to BFFF_FFFF PL PL General Purpose Port #1 to the PL, M_AXI_GP1

E000_0000 to E02F_FFFF IOP IOP I/O Peripheral registers

E100_0000 to E5FF_FFFF SMC SMC SMC Memories

F800_0000 to F800_0BFF SLCR SLCR SLCR registers

F800_1000 to F880_FFFF PS PS PS System registers

F890_0000 to F8F0_2FFF CPU CPU Private registers

FC00_0000 to FDFF_FFFF Quad-SPI Quad-SPI Quad-SPI linear address for linear mode

FFFC_0000 to FFFF_FFFF 
OCM OCM OCM OCM is mapped high

OCM is not mapped high
Architecture Porting Guide www.xilinx.com 18
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=18


Chapter 3: Feature Comparison Across Architectures
MIPS
Figure 3-1 describes the MIPS memory map.

X-Ref Target - Figure 3-1

Figure 3-1: MIPS Memory Map
Architecture Porting Guide www.xilinx.com 19
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=19


Chapter 3: Feature Comparison Across Architectures
PowerPC
Figure 3-2 shows a concept block diagram for the MMU. 

X-Ref Target - Figure 3-2

Figure 3-2: MMU Conceptual Block Diagram
Architecture Porting Guide www.xilinx.com 20
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=20


Chapter 3: Feature Comparison Across Architectures
x86
Figure 3-3 describes the x86 address mechanism.

X-Ref Target - Figure 3-3

Figure 3-3: x86 Address Mechanism
Architecture Porting Guide www.xilinx.com 21
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=21


Chapter 3: Feature Comparison Across Architectures
Renesas-SH
Figure 3-4 describes the Renesas-SH memory map.

X-Ref Target - Figure 3-4

Figure 3-4: Renesas-SH Memory Map
Architecture Porting Guide www.xilinx.com 22
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=22


Chapter 3: Feature Comparison Across Architectures
Register Sets
The following table lists major features of register sets for ARM, MIPS, PowerPC, x86, and 
Renesas-SH processors.

Register Type ARM MIPS PowerPC x86 Renesas-SH

General purpose 
registers R0–R12

$8–$15, $24, 
$25: temporary 
(not saved)
$16–$23: 
temporary 
(saved)

User model 
(UISA)
GPR0-31
FPR0-31
CR
FPSCR
XER
LR
CTR
TBU/TBL

General: EAX, 
EBX, ECX, EDX
Segment: CS, DS, 
ES, FS, GS, SS
Index: ESI, EDI, 
EBP, EIP, ESP
Indicator: 
EFLAGS

General, banked: 
R0–R7
General, 
non-banked: 
R8-R15
Floating, 
banked: FR0-15, 
XF0-15

Specific usage 
registers

R13: stack 
pointer
R14: link register
R15: program 
counter

$0: wired to zero
$1: reserved for 
assembler
$2, $3: function 
return values
$4-$7: function 
arguments
$26, $27: 
reserved for OS
$28: global 
pointer
$29: stack 
pointer
$30: frame 
pointer (saved)
$31: link register

None None

Control 
registers: SR, 
GBR, SSR, SPC, 
SGR, DBR, VBR
System registers: 
MACH, MACL, 
PR, FUPL, PC, 
FPSCR

Special purpose 
registers

System 
coprocessor 
CP15

$SR, $PC, GBR, 
VBR, SGR, DBR, 
MACL, MACH, 
PR, PC, FPUL, 
FPSCR, TRA, 
EXPEVT, INTEVT, 
PTEH, PTEL, TTB, 
TEA, MMUCR, 
PASCR, IRMCR, 
CCR, QACR0/1, 
RAMCR, LSA0/1, 
LDA0/1, 
CPUPOM, PVR

Supervisor mode 
(OEA)
MSR
PVR
SDR1
ASR
DAR
DSISR
SRR0-1
SPRG0-3
FPECR
DABR
DEC
EAR
PIR

Control: CR0-4
Debug: DR0-7
Test: TR0-7
GDTR, IDTR, 
LDTR, TR

None
Architecture Porting Guide www.xilinx.com 23
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=23


Chapter 3: Feature Comparison Across Architectures
Detailed Porting Guides: MIPS, PowerPC, Intel, and 
Renesas
When considering porting to a Xilinx Zynq-7000 device, which is an ARM Cortex-A9 based 
SoC, see UltraFast Embedded Design Methodology Guide (UG1046) [Ref 2], which contains 
details about:

• System level considerations

• Hardware design considerations

• Software design considerations

• Hardware design flow

• Software design flow

• Debugging techniques

• SDSoC environment

This methodology guide supports porting user applications from non-ARM platforms to the 
ARM platform.

Port from MIPS to ARM
For a detailed explanation, see Migrating from MIPS to ARM at the ARM site.

Port from PowerPC to ARM
For a detailed explanation, see Migrating from Power Architecture to ARM at the ARM site.

Port from Intel IA-32 to ARM
For a detailed explanation, see Migrating from IA-32 to ARM at the ARM site.

Port from Renesas-SH to ARM
For a detailed explanation, see AN314 Migrating from SH-4A to Cortex-A at the ARM site.
Architecture Porting Guide www.xilinx.com 24
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0235c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0245b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0274b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0314a/index.html
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=24


Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx 
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at 
all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting 
tips.

References
1. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

2. UltraFast Embedded Design Methodology Guide (UG1046)

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum 
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES 
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, 
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including 
negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, 
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage 
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such 
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct 
any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, 
modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions 
of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be 
subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be 
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such 
critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
Architecture Porting Guide www.xilinx.com 25
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug1046-ultrafast-design-methodology-guide.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=25


Automotive Applications Disclaimer 
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE 
PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A 
FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE 
REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL 
INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.
© Copyright 2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included 
herein are trademarks of Xilinx in the United States and other countries. ARM is a registered trademark of ARM in the EU and other countries. 
The PowerPC name and logo are registered trademarks of IBM Corp. and used under license. All other trademarks are the property of their 
respective owners.
Architecture Porting Guide www.xilinx.com 26
UG1181 (v1.0)  June 25, 2015

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1181&Title=Zynq-7000%20All%20Programmable%20SoC%20Architecture%20Porting%20Guide&releaseVersion=1.0&docPage=26

	Zynq-7000 All Programmable SoC Architecture Porting Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Ch. 2: Porting Considerations
	ARM Cortex-A9 Features
	CPU Modes
	TrustZone
	Thumb-2 Instruction Set
	SIMD Support (NEON)
	Vector Floating-Point Unit (VFPU) - Single and Double Precision
	Caches
	MMU
	OCM
	Interrupts
	System Control Coprocessor (CP15)
	Timers
	Instruction Set
	Register Set
	Aliases



	Ch. 3: Feature Comparison Across Architectures
	Architectural Comparison
	Function Calling Conventions
	Setting Up For and Cleaning Up After a Function Call
	Interrupt Models

	Address Maps
	ARM Cortex-A9 Address Maps in the Zynq-7000 AP SoC
	MIPS
	PowerPC
	x86
	Renesas-SH
	Register Sets

	Detailed Porting Guides: MIPS, PowerPC, Intel, and Renesas
	Port from MIPS to ARM
	Port from PowerPC to ARM
	Port from Intel IA-32 to ARM
	Port from Renesas-SH to ARM


	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Please Read: Important Legal Notices



