英特尔与宾夕法尼亚大学达成合作 采用具有隐私保护技术的AI识别脑肿瘤

winniewei 提交于 周五, 05/22/2020
英特尔与宾夕法尼亚大学达成合作 采用具有隐私保护技术的AI识别脑肿瘤

英特尔和宾夕法尼亚大学佩雷尔曼医学院(宾夕法尼亚大学医学院)正在组建一个联盟,包含29家国际医疗和研究机构使用一种叫做 联邦学习”隐私保护技术来训练可以识别脑肿瘤的人工智能模型。这项工作美国国立卫生研究院(NIH)国家癌症研究所(NCI)的癌症研究信息技术(ITCR)项目资助,它将向宾夕法尼亚大学生物医学图像计算和分析中心(CBICA)的首席研究员Spyridon Bakas博士提供研究资金为期三年总计120万美元。

英特尔与宾夕法尼亚大学达成合作 采用具有隐私保护技术的AI识别脑肿瘤

 “AI脑肿瘤的早期检测方面大有可为但要充分发挥全部潜力,将需要比任何一家医疗中心都要多的数据。借助英特尔软件和硬件以及一些英特尔顶尖人才的支持,我们正在与宾夕法尼亚大学和由29家协作医疗中心组成的联盟展开合作,在保护敏感的患者数据的同时,促进脑肿瘤的识别。”–Jason Martin,英特尔研究院首席工程师

 “机器学习训练需要大量和丰富多样的数据,这并不是某一单独的机构所能持有的,这点已被我们的科学界普遍认可。我们正在协调一个由29家相互协作的国际医疗和研究机构共同组成的联盟,该联盟能够使用包括“联邦学习”在内的隐私保护机器学习技术,将在此基础上训练最先进的AI医疗模型。今年,该联盟将开始开发识别脑肿瘤的算法,此算法的数据集来自于国际脑肿瘤分割(BraTS)挑战中大幅扩展的数据集版本。该联盟允许医学研究人员访问比以往数量大很多的医疗数据,同时能够保护这些数据的安全。”- 宾夕法尼亚大学Spyridon Bakas博士

这是如何做到的呢?宾夕法尼亚大学医学院与29家来自美国、加拿大、英国、德国、荷兰、瑞士和印度医疗和研究机构,是使用“联邦学习”的技术来实现的。这种分布式机器学习方式可以使得机构组织能够在不共享患者数据的情况下进行深度学习项目协作。 

去年,宾夕法尼亚大学医学院和英特尔率先发表了有关医学影像领域“联邦学习”的论文特别展示了“联邦学习”方法可以训练出一种模型,使其准确率达到传统无隐私保护训练准确率的99%以上。该论文最初在西班牙格拉纳达举行的2018国际医学图像计算和计算机辅助干预会议(MICCAI)发表。这项新工作将利用英特尔软件和硬件实现“联邦学习,为模型和数据提供额外的隐私保护。

根据美国脑肿瘤协会(ABTA)的数据,今年将有近8万人被确诊患有肿瘤,其中儿童患者超过4600。为训练和建立一种检测脑肿瘤的模型,以帮助早期检测并获得更好的结果,研究人员需要获得大量相关的医学数据。然而,保持数据私密性并使数据受到保护至关重要,这正是采用英特尔技术联邦学习”的用武之地通过这种方法,来自所有合作机构的研究人员将能够共同协作,构建和训练一种算法来检测脑肿瘤,同时保护敏感的医疗数据。 

2020年,宾夕法尼亚大学医学院和 29 家国际医疗和研究机构将使用英特尔的“联邦学习”硬件和软件,在迄今为止最大的脑肿瘤数据集上进行训练来生成全新的具有最佳性能的AI模型, 而其中敏感的病患数据将单独保存在各个合作机构中。预计参与发起该联盟第一阶段工作的合作机构小组包括宾夕法尼亚大学医院、圣路易斯华盛顿大学、匹兹堡大学医疗中心、范德比尔特大学、皇后大学、慕尼黑技术大学、伯尔尼大学、伦敦国王学院和塔塔纪念医院等。 

关于英特尔

英特尔(NASDAQ: INTC)作为行业引领者,创造改变世界的技术,推动全球进步并让生活丰富多彩。在摩尔定律的启迪下,我们不断致力于推进半导体设计与制造,帮助我们的客户应对最重大的挑战。通过将智能融入云、网络、边缘和各种计算设备,我们释放数据潜能,助力商业和社会变得更美好。如需了解英特尔创新的更多信息,请访问英特尔中国新闻中心newsroom.intel.cn 以及官方网站 intel.cn

相关文章

Digi-Key